LAWRENCE BERKELEY NATIONAL LABORATORY

Femtosecond X-ray Absorption Measurement of

the Insulator-to-metal Transition in VO₂

Andrea Cavalleri

Materials Sciences Division, Lawrence Berkeley Laboratory

People

H.H.W. Chong R.W. Schoenlein

Materials Sciences Division, LBNL

T.E. Glover, P. Heimann, H. Padmore

Advanced Light Source, LBNL

Th. Dekorsy

Dresden, Germany

S. Fourmaux J.K. Kieffer University of Quebec

LAWRENCE BERKELEY NATIONAL LABORATORY

I HAIIGNAL LAB

Pouget et al. *Phys. Rev. B 10, 801 (1974); Phys. Rev. Lett.* 35, 873 (1975)

Thermally-induced structural transitions are often **First-Order** and **hysteretical**.

Photo-induced Insulator-to-Metal

Simultaneous transitions ?

BERKELEY LAB

Mott Hubbard Insulator ?

Reverse Peierls Transition: 100 fs BERKELEY Q Ο E₄ \cap Ō Ef Ef k **Optical Excitation** E, 3 d//

Phase Transition Time: 75 fs

Structural Motion is necessary for the metallic phase

Structural Motion is necessary for the metallic phase

Impulsive excitation of Optical Phonons

Excitation of symmetry-breaking modes

Excitation of symmetry-breaking modes

Cavalleri et al. cond-mat/0403214

BERKELEY LAB

Structural Motion is necessary for the metallic phase

Zholents and Zolotorev, Phys. Rev. Lett., 76, 916,(1996).

Schoenlein et al., Science, 287, (2000)

Technical Significance

First femtosecond X-ray measurement with a fully tunable synchrotron beamline at 500 eV

Soft X-rays Hard X-rays

Soft X-rays Hard X-rays

1) Driving phase transitions impulsively and probing them dynamically uncovers fundamental microscopic physics

2) Sub-vibrational measurements assign cause and effect

3) It is <u>essential</u> to have both <u>spectroscopy</u> and <u>diffraction</u> probes on the femtosecond timescale