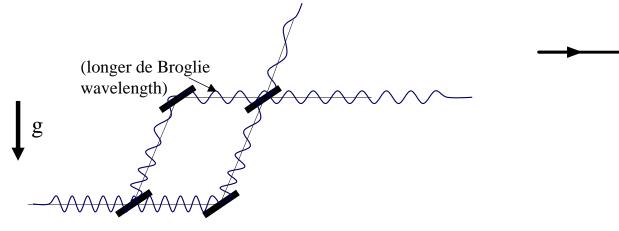
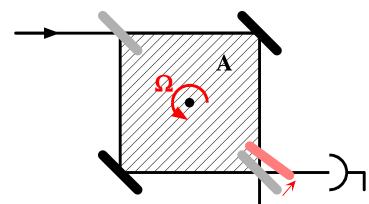


Navigation, Gravitation and Cosmology with Cold Atom Sensors

Atom Interferometry Group Stanford Center for Position, Navigation and Time Mark Kasevich

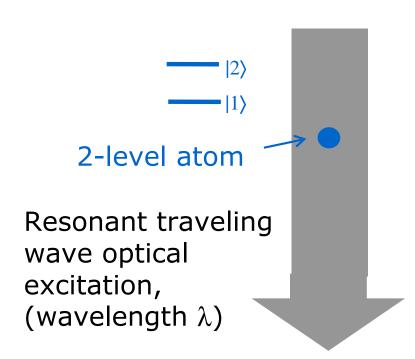

de Broglie wave sensors


Gravity/Accelerations

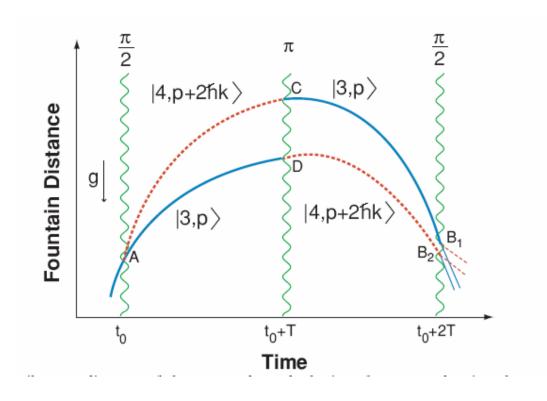
As atom climbs gravitational potential, velocity decreases and wavelength increases

Rotations

Sagnac effect for de Broglie waves



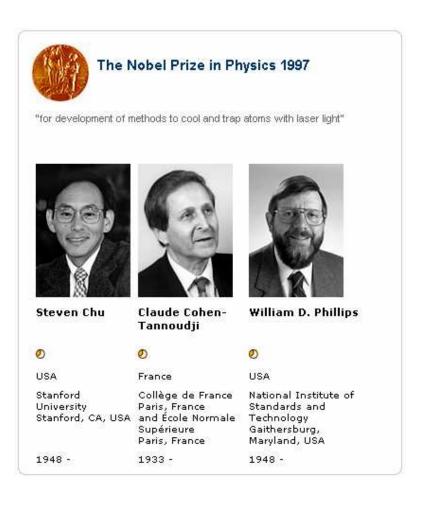
Current ground based experiments with atomic Cs: wavepacket spatial separation ~ 1 cm, phase shift resolution $\sim 10^{-5}$ rad


(Light-pulse) atom interferometry

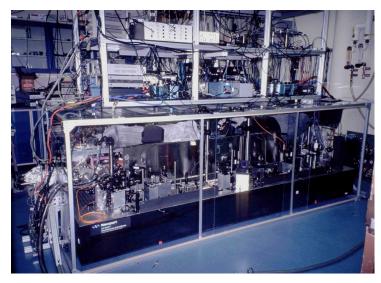
Resonant optical interaction

Recoil diagram

Momentum conservation between atom and laser light field (recoil effects) leads to spatial separation of atomic wavepackets.


Enabling Science: Laser Cooling

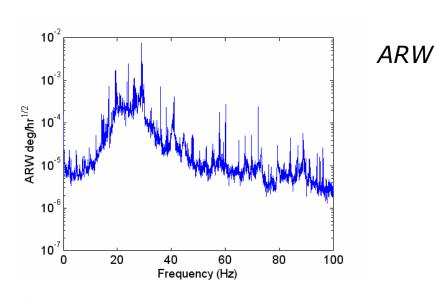
Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.



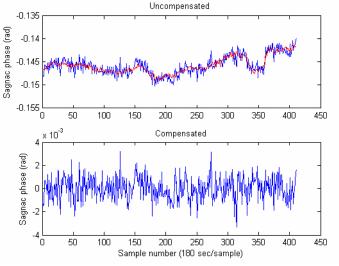
Laser cooling:
Laser light is
used to cool
atomic vapors to
temperatures of
~10⁻⁶ deg K.

Image source: www.nobel.se/physics

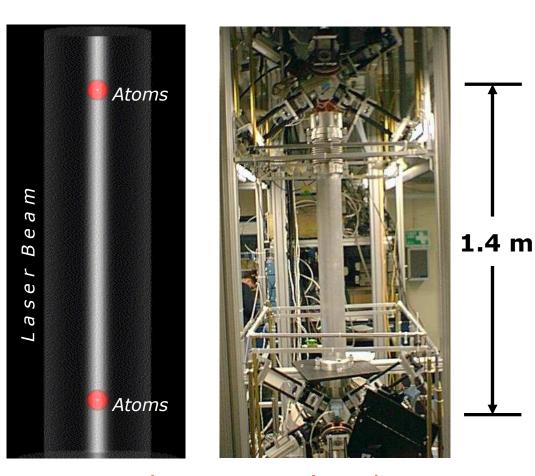
Laboratory gyroscope

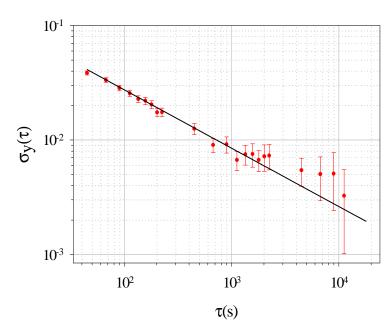

AI gyroscope

ARW 3 μ deg/hr^{1/2}


Bias stability: $< 60 \mu deg/hr$

Scale factor: < 5 ppm

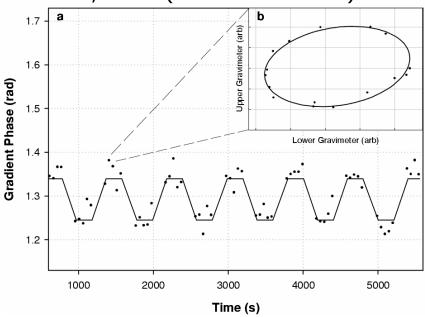

(submitted for publication)



Laboratory gravity gradiometer

Distinguish gravity induced accelerations from those due to platform motion with differential acceleration measurements.

Demonstrated differential acceleration sensitivity:


 $4x10^{-9} g/Hz^{1/2}$

(2.8x10⁻⁹ g/Hz^{1/2} per accelerometer)

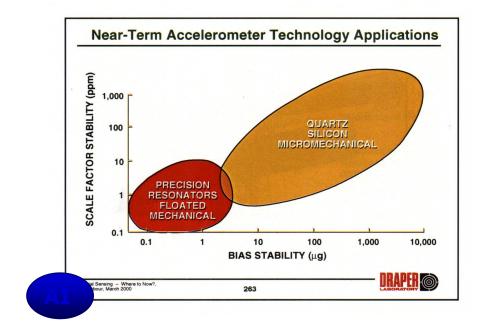
Gravity Gradiometer: Measurement of G

Yale, 2002 (Fixler PhD thesis)

Pb mass translated vertically along gradient measurement axis.

Systematic	$\frac{\delta G}{G}$
Initial Atom Velocity	1.88×10^{-3}
Initial Atom Position	1.85×10^{-3}
Pb Magnetic Field Gradients	1.00×10^{-3}
Rotations	0.98×10^{-3}
Source Positioning	0.82×10^{-3}
Source Mass Density	0.36×10^{-3}
Source Mass Dimensions	0.34×10^{-3}
Gravimeter Separation	0.19×10^{-3}
Source Mass Density inhomogeneity	0.16×10^{-3}
TOTAL	3.15×10^{-3}

Status: $\partial G/G \sim 3 \ ppt$ (submitted for publication). See also Tino, MAGIA

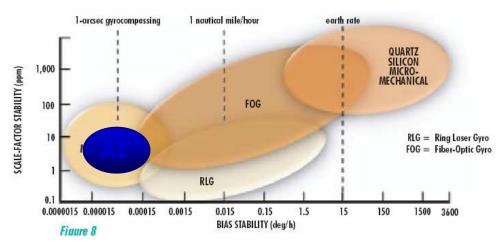

Sensor characteristics

Light-puse AI accelerometer characteristics

Bias stability: <10⁻¹⁰ g

Noise: 4x10⁻⁹ g/Hz^{1/2}

• Scale Factor: 10⁻¹²

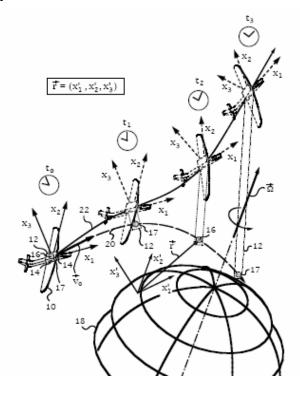


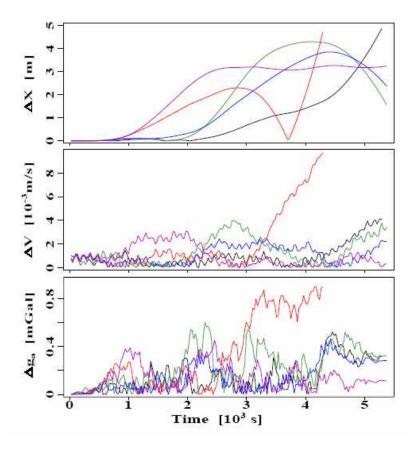
Light-puse AI gyroscope characteristics

Bias stability: <60 μdeg/hr

Noise (ARW): 4 μdeg/hr^{1/2}

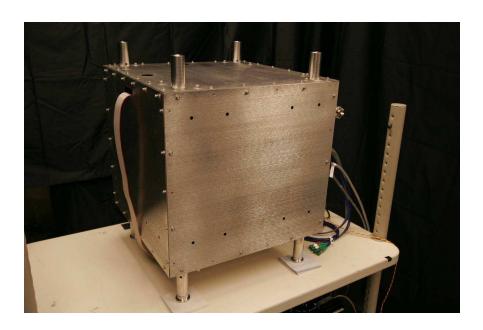
Scale Factor: <5 ppm

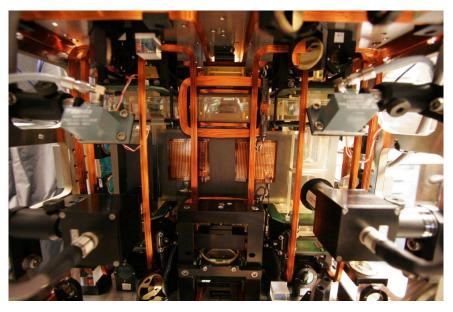



Source: Proc. IEEE/Workshop on Autonomous Underwater Vehicles

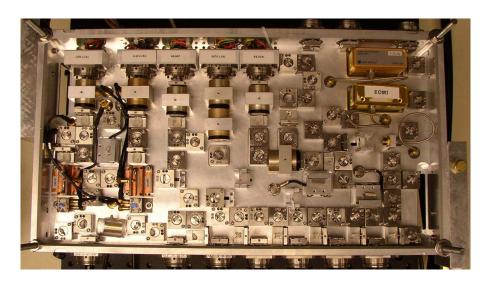
Navigation performance

Determine geo-located platform path.

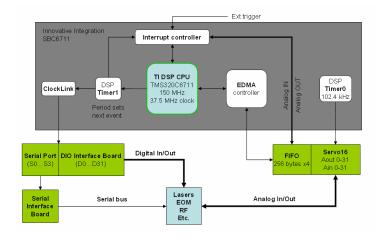

Necessarily involves geodetic inputs


Simulated navigation solutions. 5 m/hr system drift demonstrated.

Compact gravity gradiometer/gyroscope/accelerometer



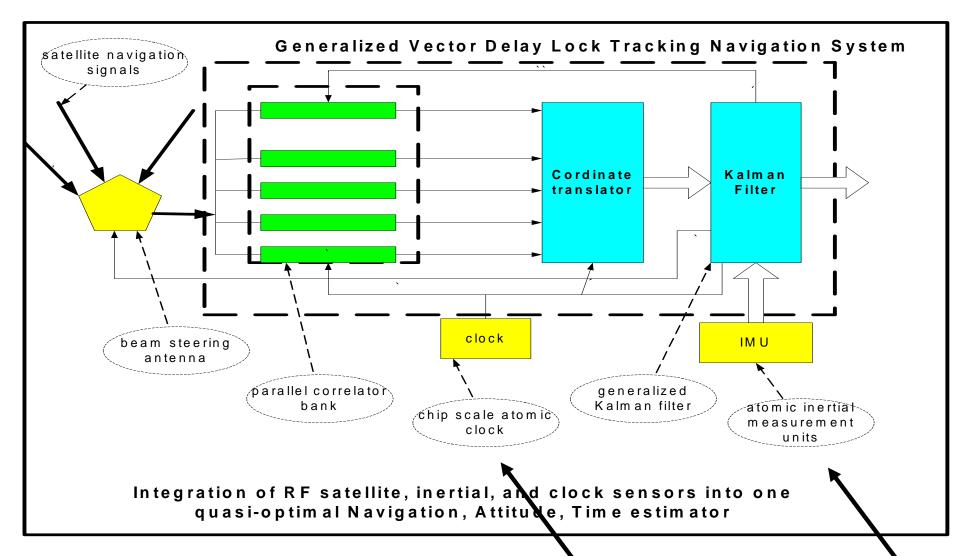
Multi-function sensor measures gravity gradient, rotation and linear acceleration along a single input axis.


Interior view

Laser system

Sensor electronic/laser subsystems

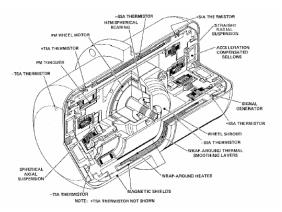
Control electronics frames (controls 6 sensor heads)



Laser frames (scalable architecture provides light for 2-6 sensor heads)

Next generation integrated INS/GPS

Stanford Center for Position, Navigation and Time. In collaboration with Per Enge, Jim Spilker

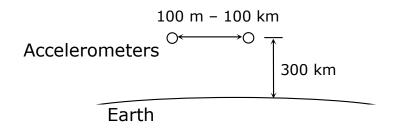

Atomic physics contributions

Space-based applications

- Platform jitter suppression
 - High resolution line-of-sight imaging from space
 - Inertial stabilization for next-generation telescopes
- Satellite drag force compensation at the 10⁻¹⁰ g accuracy level
 - GPS satellite drag compensation
 - Pioneer-type experiment
- Autonomous vehicle navigation, formation flying

Existing technology:

- ESGN (submarine navigation)
- Draper LN-TGG gyro
- Litton/Northrop HRG (Hemispherical Resonator)


LN-TGG; 1 nrad 0.1-100 Hz

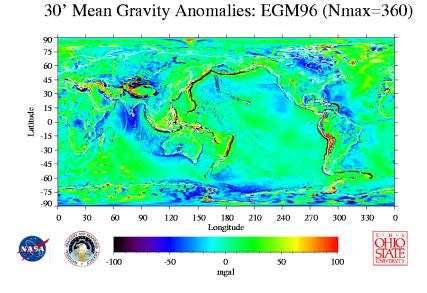
source: SPIE 4632-15

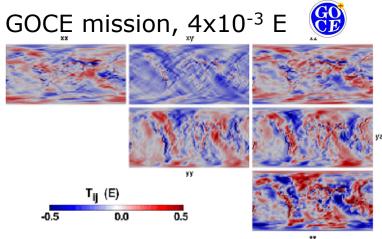
Fibersense/NG **IFOG**

Space-based geodesy (also lunar geodesy)

Accelerometer sensitivity: 10⁻¹³ g/Hz^{1/2}

- Long free-fall times in orbit


Measurement baseline


- 100 m (Space station)
- 100 km (Satellite constellation)

Sensitivity:

- -10^{-4} E/Hz^{1/2} (Space Station)
- − 10⁻⁷ E/Hz^{1/2} (Satellite constellation)

Earthquake prediction; Water table monitoring

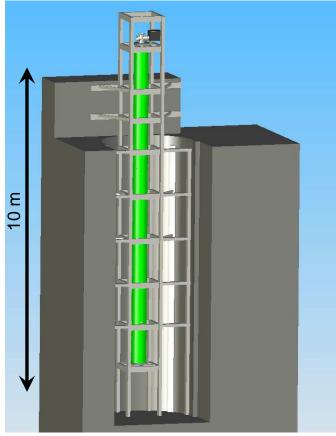
http://www.esa.int/export/esaLP/goce.html

Equivalence Principle

Co-falling 85Rb and 87Rb ensembles

Evaporatively cool to < 1 μ K to enforce tight control over kinematic degrees of freedom

Statistical sensitivity


 $\delta g \sim 10^{-15}$ with 1 month data collection

Systematic uncertainty

 $\delta g \sim 10^{-16}$ limited by magnetic field inhomogeneities and gravity anomalies.

Also, new tests of General Relativity

Precursor to possible space-based system.

10 m atom drop tower.

~10 cm wavepacket separation (!)

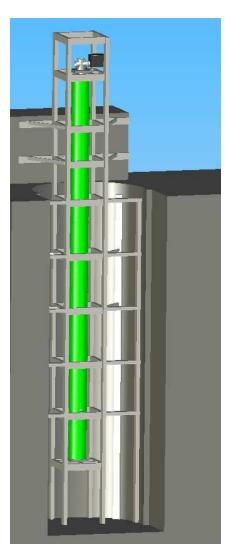
Error Model

Use standard methods to analyze spurious phase shifts from uncontrolled:

- Rotations
- Gravity anomalies/gradients
- Magnetic fields
- Proof-mass overlap
- Misalignments
- Finite pulse effects

Known systematic effects appear controllable at the $\delta g \sim 10^{-16}$ level.

 $[\delta G/G \sim 10^{-5}]$ is feasible (limited by test mass)]


$-k_{\tt eff} g T^2$	-2.84724×10 ⁸	1.
$k_{eff} R_E \Omega_y^2 T^2$	6.21045×10 ⁵	2.18122×10^{-3}
$k_{\tt eff} T_{\tt ss} V_{\tt L} T^3$	1.57836×10^{3}	5.54347×10^{-6}
$-\frac{7}{12}$ $k_{eff}T_{ss}$ gT^4	-9.20709×10^2	3.23369×10 ⁻⁶
$2 \text{ k}_{\text{eff}} \text{ V}_{\text{x0}} \Omega_{\text{y}} \text{ T}^2$	1.97884×10^{1}	6.95002×10^{-8}
-3 $k_{eff} V_L \Omega_y^2 T^3$	-5.16411	1.81373×10^{-8}
$\frac{7}{4} k_{\text{eff}} \Omega_{\text{y}}^2 \text{gT}^4$	3.0124	1.05801×10 ⁻⁸
$\frac{7}{12}$ k _{eff} R _E T _{ss} Ω_y^2 T ⁴	2.00827	7.05338×10^{-9}
$\frac{k_{\rm eff}^2 T_{\rm zz} \hbar T^3}{2 \rm m}$	7.05401×10^{-1}	2.47749×10 ⁻⁹
$k_{eff} T_{ss} v_{s0} T^{2}$	7.05401×10^{-1}	2.47749×10^{-9}
$k_{\tt eff} T_{\tt ss} T^2 z_0$	8.92817×10^{-2}	3.13573×10^{-10}
$-\frac{7}{4} \text{ k}_{\text{eff}} \text{ R}_{\text{E}} \Omega_{\text{y}}^{4} \text{ T}^{4}$	-6.57069×10^{-3}	2.30774×10^{-11}
$-\frac{7}{4} \text{ k}_{\text{eff}} \text{ R}_{\text{E}} \Omega_{\text{y}}^{2} \Omega_{\text{s}}^{2} \text{T}^{4}$	-3.84744×10^{-3}	$\textbf{1.35129} \times \textbf{10}^{-11}$
$-\frac{3 k_{\rm eff}^{ 2} \Omega_{\rm y}^{ 2} h T^3}{2 m}$	-2.30795×10^{-3}	8.10592×10^{-12}
$-3 \text{ k}_{\text{eff}} \text{ V}_{\text{s0}} \Omega_{\text{y}}^2 \text{ T}^3$	-2.30795×10^{-3}	8.10592×10^{-12}
$\frac{1}{4} \text{ k}_{\text{eff}} \text{ T}_{\text{ss}}^2 \text{ V}_{\text{L}} \text{ T}^5$	2.18739×10^{-3}	7.68251×10^{-12}
$3 \text{ k}_{\texttt{eff}} \text{ v}_{\texttt{y}0} \Omega_{\texttt{y}} \Omega_{\texttt{z}} \texttt{T}^{\texttt{3}}$	1.76607×10^{-3}	6.20273×10^{-12}
$-\frac{31}{360} \text{ keff Tss}^2 \text{ g T}^6$	-7.53436×10^{-4}	2.6462×10^{-12}
$4 \; B_0 \; V_L \; T^2 \; \alpha b_{z1}$	5.14655×10^{-4}	1.80756×10^{-12}
$-4~B_0~g~T^2~\alpha~b_{s1}$	-5.14655×10^{-4}	1.80756×10^{-12}
$k_{eff} \Omega_y^2 T^2 z_0$	9.73714×10^{-5}	3.41985×10^{-13}
$-k_{\tt eff}\Omega_{\tt y}\Omega_{\tt z}{\tt T}^2{\tt y}_0$	-7.45096×10^{-5}	2.61691×10^{-13}
$\frac{7}{6}$ k _{eff} T _{ss} V _{x0} Ω_{y} T ⁴	6.39894×10^{-5}	2.24742×10^{-13}
$-7 V_L g T^4 \alpha b_{s1}^2$	-4.7766×10^{-5}	$\text{1.67762} \times \text{10}^{\text{-13}}$
$\frac{7}{6}$ k _{eff} T _{KK} V _{KO} Ω_{y} T ⁴	-3.19947×10^{-5}	1.12371×10^{-13}
$4 \text{ V}_{\text{L}}^2 \text{ T}^3 \alpha b_{\text{m}1}^2$	2.72948×10^{-5}	9.58642×10^{-14}
$3 g^2 T^5 \alpha b_{s1}^2$	2.04711×10 ⁻⁵	7.18982×10^{-14}
	-	

Equivalence Principle Installation

10 m atom drop tower.

Gravitation

Light-pulse interferometer phase shifts for Schwarzchild metric:

- Geodesic propagation for atoms and light.
- Path integral formulation to obtain quantum phases.
- Atom-field interaction at intersection of laser and atom geodesics.

Objective:

Ground-based precision tests of post-Newtonian gravity.

Post-Newtonian trajectories for classical particle:

$$\frac{d\mathbf{v}}{dt} = -\nabla(\phi + 2\phi^2 + \psi) - \frac{\partial\zeta}{\partial t} + \mathbf{v} \times (\nabla \times \zeta)$$

$$+ 3\mathbf{v}\frac{\partial\phi}{\partial t} + 4\mathbf{v}(\mathbf{v} \cdot \nabla)\phi - \mathbf{v}^2\nabla\phi$$
From Weinberg, Eq. 9.2.1

Prior work, de Broglie interferometry: Post-Newtonian effects of gravity on quantum interferometry, Shigeru Wajima, Masumi Kasai, Toshifumi Futamase, Phys. Rev. D, 55, 1997; Bordé, et al.

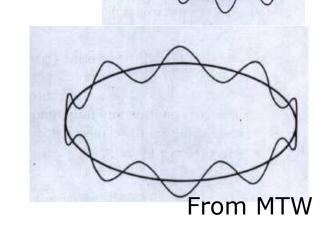
Ground-based Post-Newtonian Interferometry

Calculated phase shifts for **ground based**, 10 m, apparatus.

- Analysis indicates that several post-Newtonian terms are comfortably within apparatus reach.
- In-line, accelerometer, configuration (milliarcsec link to external frame NOT req'd).
- New constraints of PPN parameters.
- Identification of most-promising space-based tests.

Collaborators: Savas Dimopoulos, Peter Graham, Jason Hogan.

GM keff T ² rlaser ²	$1. \times 10^8$
_ 2 GM keff T ³ vLr rlaser ³	-2000.
_ GM T ² ωeff rlaser ²	-1000.
GM T ² ωA rlaser ²	1000.
7 GM ² keff T ⁴ 6 rlaser ⁵	116.667
3 GM keff T ² vLr rlaser ²	30.
$-\frac{3 \text{ GM}^2 \text{ keff } \text{T}^3}{\text{rlaser}^4}$	-3.
- GM keff ² T ³ m rlaser ³	-1.
7 GM keff T ⁴ vLr ² 2 rlaser ⁴	0.035
2 GM T ³ vLr weff rlaser ³	0.02
$-\frac{2 \text{ GM T}^3 \text{ vLr } \omega A}{\text{rlaser}^3}$	-0.02
3 GM keff ² T ² 2 m rlaser ²	0.015
GM ² keff T ² rlaser ³	0.01
$-\frac{11 \text{ GM}^2 \text{ keff T}^5 \text{ vLr}}{2 \text{ rlaser}^6}$	-0.0055
$-\frac{7 \text{ GM}^2 \text{ T}^4 \omega \text{eff}}{6 \text{ rlaser}^5}$	-0.00116667
7 GM ² T ⁴ ωA 6 rlaser ⁵	0.00116667
$-\frac{8 \text{ GM keff } \text{T}^3 \text{ vLr}^2}{\text{rlaser}^3}$	-0.0008
$-\frac{3 \text{ GM T}^2 \text{ vLr } \omega \text{eff}}{\text{rlaser}^2}$	-0.0003
35 GM ² keff T ⁴ vLr 2 rlaser ⁵	0.000175
GM T ² vLr ωA rlaser ²	0.0001
7 GM keff ² T ⁴ vLr 2 mrlaser ⁴	0.000035


Cosmology

Are there (local) observable phase shifts of cosmological origin?

Analysis has been limited to simple metrics:

- FRW: $ds^2 = dt^2 a(t)^2(dx^2 + dy^2 + dz^2)$
- McVittie: ~Schwarzchild + FRW

$$g = \left(\frac{1-m(t)/2r}{1+m(t)/2r}\right)^2 dt^2 - \left(1+\frac{m(t)}{2r}\right)^4 a^2(t) \left(dr^2 + r^2 d\Omega^2\right).$$
 Giulini, gr-qc/0602098

Work in progress ...

Future theory: Consider phenomenology of exotic/speculative theories (after validating methodology)

Collaborators: Savas Dimonoul

Collaborators: Savas Dimopoulos, Peter Graham, Jason Hogan.

Future technology: Quantum Metrology

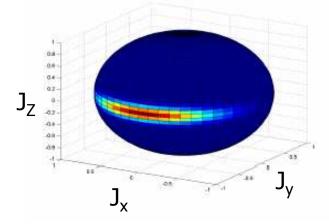
Atom shot-noise limits sensor performance.

Recently evolving ideas in quantum information science have provided a road-map to exploit exotic quantum states to significantly enhance sensor performance.

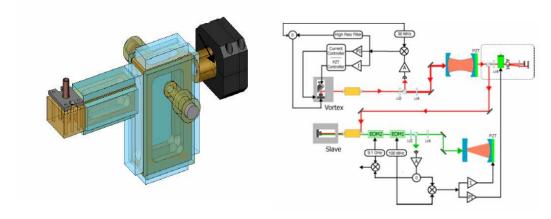
- Sensor noise scales as 1/N where N is the number of particles
- "Heisenberg" limit
- Shot-noise $\sim 1/N^{1/2}$ limits existing sensors

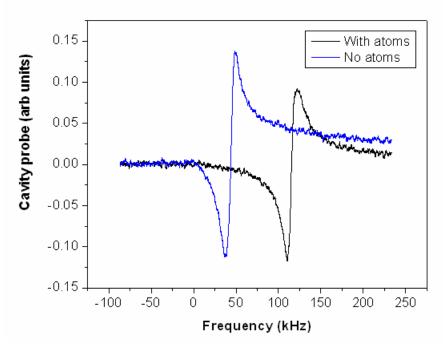
Challenges:

- Demonstrate basic methods in laboratory
- Begin to address engineering tasks for realistic sensors


Impact of successful implementation for practical position/time sensors could be substantial.

Enables crucial trades for sensitivity, size and bandwidth.




Quantum Metrology

- Exploit exotic quantum states to measure phase shifts at Heisenberg (1/N) limit
- CQED approach promising for precision sensors. Dispersive atom-cavity shifts enable requisite QND state preparation.
- Possible 10x to 100x improvement in sensor noise.

Spin squeezed state enables 1/N sensitivity

Possible QND detection of atom number (~5 atom resolution).

Summary

- Precision navigation
 - Pioneer
- Equivalence Principle
- Post-Newtonian gravity
- Cosmology
- + quantum metrology in future sensor generations

Thanks

- Todd Gustavson, Research Scientist
- Boris Dubetsky, Research Scientist
- Todd Kawakami, Post-doctoral fellow
- Romain Long, Post-doctoral fellow
- Olaf Mandel, Post-doctoral fellow
- Peter Hommelhoff, Post-doctoral fellow
- Ari Tuchman, Research scientist
- Catherine Kealhoffer, Graduate student, Physics
- Wei Li, Graduate student, Physics
- Hui-Chun Chen, Graduate student, Applied Physics
- Ruguan Wang, Graduate student, Physics
- Mingchang Liu, Graduate student, Physics
- Ken Takase, Graduate student, Physics
- Grant Biedermann, Graduate student, Physics
- Xinan Wu, Graduate student, Applied physics
- Jongmin Lee, Graduate student, Electrical engineering
- Chetan Mahadeswaraswamy, Graduate student, Mechanical engineering
- David Johnson, Graduate student, Aero/Astro engineering
- Geert Vrijsen, Graduate student, Applied physics
- Jason Hogan, Graduate student, Physics
- Nick Ciczek, Graduate student, Applied Physics
- Mike Minar, Graduate student, Applied Physics
- Sean Roy, Graduate student, Physics
- Larry Novak, Senior assembly technician
- Paul Bayer, Optomechanical engineer